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LETTER TO THE EDITOR 

Inequalities on the time evolution of probabilities 

W Grimus 
Institut fir 'thenretixhe Physik, Univmitdt Wien, Baltnnanngasse 5, A-I090 Vi- Austria 

Received 25 May 1993 

Abstract. We consider pmbabilities p&) for quantum mechanical system to be found in a 
subspace M of the Hilbcrl space of and derive an opper bund on the change in time of 
p ~ ( f )  which contains only the Hamiltonian and the projector PM onto M but not the densify 
matrix. 

In the discussion of the solar neutrino puzzle, neutrino propagation in matter and magnetic 
fields plays an important role (for recent reviews see [l]). In the ulnarelativistic case, which 
is most likely relevant for all neutrinos participating in solutions to this problem, neuhino 
propagation can be studied by considering an effective Schriidinger equation [Z] 

d* 
dr 

i- = H @  

where @ is a vector whose components are labelled by neutrino helicity and flavour and H 
is simply a r-dependent matria acting on ~. In the most general situation envisaged in the 
literature H is given by [2, 11 

for neutrinos propagating in the sun. In this matria p is the neutrino momentum and 
B* = 81 f iBz with B,. 8 2  being components of the magnetic field orthogonal to the 
propagation direction. For nF flavours VL, VR and A are nF x matrices. In the simplest 
case VL describes coherent forward scattering by mauer through the standard model charged 
and neutral current interactions, VR = 0 for Dirac neutrinos and -V{ for Majorana neutrinos, 
VS = M, the neutrino mass mahix, and A contains the magnetic moments and transition 
moments 131. In notation (2) the upper f l ~  components of @ have negative and the lower 
half positive helicity. VL (VR) and B I , ~  vary along the neutrino path. Therefore H depends 
on t .  

Recently Moretti [41 has derived an inequality for the probability of transitions from 
negative to positive helicity in the case of two neutrino flavours and the Hamiltonian (2). 
In this letter we will show that the result of [4] is a special case of a class of inequalities 
involving probabilities p&) for finding the system in a given hyperplane M of the Hilbert 
space. These inequalities are also valid if the state of the system is described by a density 
matrix pr. In this case (1) has to be replaced by 

iA = [ H W .  ptl .  (3) 
Consequently, the general result is neither confined to probabilites for spin flip nor to the 
special form of H in (2). With some caution it will also be applicable to systems with an 
infinite number of degrees of freedom but there questions of the domain of H ( t )  will be 
important. To avoid these complications we will confine ourselves to the finite-dimensional 
case and prove the following theorem. 
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Theorem. Suppose that a system described by a density matrix pl and a Hamiltonian H(1) 
has a finite number of degrees of freedom, i.e. pt and H(r) act on a finitedimensional 
Hilbert space 71. Furthermore, let M be a hyperplane of 71 with PM being the projector 
onto it. Then the probability to find the system in M is given by 

p d t )  =Tr ( P C P M )  (4) 

and the inequality 

holds for all IO < 11. 

Proof. It is convenient to consider Grst pure states with density maaices 

Pr = I$t)(*1l. (6) 

At the end it will be easy to see the validity of (5) for mixed slates. 
In the case of (6) the probability (4) is given by 

P M ( 0  = (*,IPM*!). (7) 

To prove (5) we first take the derivative of (7): 

5 = 2 Re ($[PM$) = 2 Im ($lP~ff$) = 2 Im (elPMH(1 -PM)$). (8) 

Then we integrate (8). use IIm zI 6 121 and employ the CauchySchwarz inequality. Thus 
we obtain 

dr 

In the next step we calculate the length of the vector PnrH(1 - P M ) ~  by using an 
orthonormal bask (e,ly = 1, . . . , dim% and employ the CauchySchwm inequality once 
more which leads to 
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In the last step we have raken advantage of 

Il(1- PM)@II~ = 1 - I Ip~@l l~  and Z l l P ~ @ l l  Il(1 -'P~)@ll < 1. (1 1) 

In this way the state vector @ drops out of the integral. 
Finally, we show that (IO) is also valid for general density matrices 

where (@a IOL = 1, . . . , dim%] is an orthonormal basis of 7f and E, pa = 1 with pa 2 0 
for all a. In this case we define probabilities &(I )  = ( @ u L I P ~ @ m t )  such that 

Using inequality (10) for each of the p;tr we obtain 

which shows the validity of the theorem for general mixed states. 

Remarks. As can be seen from the proof the integrand in inequality (5) can be represented 
in several equivalent forms by using properties of projectors and traces. These expressions 
are given by 

Tr ( h H ( 1 -  PM)HPM) = Tr ((1 - P M ) H P M H ( l -  PM)) 

= T ~ ( P M H ( ~ - P M ) H )  = C ~ ~ ( I - P M ) H P M ~ ~ ~ ~ '  
Y 

In the case of dim7f = 00 strong enough assumptions have to be made to allow for the 
manipulations at each step of the proof. In the final result the u l i  expression in (15) will 
not be suited for infinite dimensions because the operator f'~H(1- PM)H will in general 
be neither positive nor in the trace class. For positive operators the m e  is well defined if 
infinity is included in its range 151 and thus the other expressions in (15) will make sense 
apaK from possible difficulties with the domain of H(r).  If M is linite-dimensional and all 
manipulations with respect to the domain of H ( f )  are well defined in (15) then we expect 
(5) to hold. If dimM = 00 there will stili be cases where (5) is applicable and gives a finite 
bound. However, it is easy to find examples even with bounded Hamiltonians such that the 
maces in (15) are infinite. Needless to say in this case (5) is useless. 
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Let us come back to the spin flip in the solar neuhino problem. The subspace of 
positive helicity is given by the vectors which have zeros in the first flF components. Then 
the probability that the neutrino has positive helicity 

is zero at the time of production in the sun. For simplicity we have taken a pure state + 
in (16). Therefore we obtain an upper bound for detecting a neuhino with positive helicity 
I41 

The integral goes over the neutrino path in the sun and BL is the magnetic field orthogonal 
to the neutrino momentum. One has to take into account that p +  actually depends on the 
path and on the magnetic 6eId configuration along it at the time the neuaino travels through 
the sun. Therefore, actually a probability p$ averaged over neutrino energies and paths and 
over magnetic fields varying with path and time is measured and the brackets around the 
integral in (5) indicate that the integral also has to be averaged accordingly. 

Inequality (5) can, of course, also be applied to other probabilities than p+ .  p -  in 
the solar neutrino problem. However, in the case of vacuum mixing it is not so easy to 
extract useful information from (5) because vacuum mixing is also operative outside the 
sun. If the distance from sun to earth is incorporated into the integral then it is much greater 
than one for the usual range of mixing angles and mass differences in the solar neuaino 
problem and the inequality is useless. Therefore in that case p&l) should be considered 
as a probability at the edge of the sun and neuhino oscillations should be taken into account 
with other methods. 

In the present letter we have derived a class of inequalities for the time evolution of 
probabilities valid in general quantum mechanical systems. In this way we have generalized 
an inequality derived in 141 for two neuhino flavours and the Hamiltonian (2). 

The author thanks E Kh Akhmedov, S M Bilenky and B Baumgarmer for interesting 
discussions. 
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